Latest news about Bitcoin and all cryptocurrencies. Your daily crypto news habit.
Introduction and Problem
Reading and watching the news has always been an important way for people to educate themselves about the world. However, as it becomes easier to spread information and opinions through the internet, people are increasingly getting their news from untrustworthy sources, which leads to misinformation and confusion about which facts are true.
Between 2016 and 2017, the number of people who have gotten news from Twitter has gone up 15%. For Snapchat, itâs 12%. And from 2013â2017, the number of people getting news from Facebook has gone up 21% (Shearer and Gottfried). While itâs impossible to know the exact ratio between fake and real news on social media, anything can be shared, and thereâs no differentiation between fact, opinion, and lies. Watching mainstream TV often isnât any better. According to Politifact, 60% of claims made on Fox are untrue, 44% for MSNBC, and 21% for CNN (Sharockman). These claims only include those on news channels and can include claims from the anchors or pundits. The phenomenon of untrue news has come to be known as fake news. The term fake news first came into public attention during the 2016 election, when a Buzzfeed journalist noticed a large amount of false news coming from Macedonia. Soon afterwards, both candidates started using fake news to attack each other and Trump used the term fake news to deflect news that he did not like. According to a Stanford study, the spread of fake news has caused 84% of American voters to face difficulty in differentiating between real and fake news. This problem also affects young people. 44% of teens and tweens say that they cannot tell the difference between real and fake news.
Why Itâs Hard To Get Fix Fake News
There are many proposed solutions to fake news including media literacy classes and improved algorithms. However, these solutions donât address the underlying cause of fake news. And, as technology and AI improves, new forms of fake news make these solutions ineffective.
Watch Jordan Peele use AI to make Barack Obama deliver a PSA about fake news
In order to truly get rid of fake news, we need to attack the incentive structure behind it. The main cause of fake news is the misalignment of incentives between news publishers and readers. As Harvard Business Report writes, a true solution needs to âsolve the mediaâs structural challenges [and] change its incentivesâ. News publishers make money solely off of writing interesting news and getting clicks (there are subscription based news sites that are marginally better, but most people arenât going to subscribe to news publishers that donât write somewhat interesting news). The incentives of readers should be to inform ourselves, but our brains are wired to prioritize âpopularity over qualityâ. As a result, news publishers are rewarded for writing sensationalized (and often completely fake) news. This has always been the case (ex. Yellow journalism) and the internet has drastically increased the amount of people who are able to make money from writing sensational news.
Solution
In order to fix fake news, we need to disincentivize news publishers from publishing fake news (making it unprofitable or a waste of time to write fake news) and incentivize people to do research and think critically when they read the news.
My proposed solution comes in the form of a prediction market powered news site. On this system, news publishers would have to stake a certain amount of money in order to publish a story. If the story is confirmed to be true, the news publishers would get their stake back. If the story is proven false, the publishers would lose their stake. This disincentivizes publishers to reward structure for fake news because their news story gets deleted and they lose money. This completely changes the reward structure for news publishers. Thereâs is absolutely no reward (thereâs actually a loss) for writing fake news. However, the potential reward for publishers is much bigger than traditional publishing. News readers would obviously like being able to earn money. This will lead to more ad money for the news publisher. The hard part about this is proving whether a story is real or fake. This is where crowd wisdom comes in. The readers of the story can be asked whether or not they believe the story is real or fake. These readers must wager money on their prediction. In addition, the readers are asked how they think other people will vote. Their answers are put through the Bayesian Truth Serum, which finds the surprisingly popular answer. Studies show that the surprisingly popular answer (and not the majority vote) is the correct one. An MIT study showed that the Bayesian Truth Serum âreduced errors by 21.3 percent compared to simple majority votesâ (Knight). If the vote says that the news story is true, the story stays on the site and can earn ad money, subscription money, part of the money that the false voters wagered, etc. If the vote says that the news story is false, the news publisher loses their stake to the yes voters and the story is deleted. The people that voted true also lose their money. The wagering system (also known as a prediction market) incentivizes news readers to do research and more importantly, it incentivizes them to share their research to try to convince other people to their side. In addition, this system forces people to change their frame of mind. Instead of seeing news articles from a lens of agreeing or disagreeing with it, they need to look at it from a purely objective point of view in order to make a vote. The effectiveness of this solution depends on two things. The first one is itâs popularity. If no one reads stories on this site, then it becomes useless. The second one is the accuracy of the prediction market. Unless the prediction market is accurate the majority of the time , then this solution would actually be harmful because fake news would be promoted as real. However, âprediction market is closer to the actual outcome than are polls 74% of the timeâ (Cornell).
Also, it could be more feasible to fact check specific statistics within a story, assign a âtruthfulnessâ score, and remove stories that have too low of a score. This would ensure that only empirical claims were being analyzed.
It would make sense to utilize a service like Augur (which comes with the additional benefits that the Augur prediction market provides). In addition, the news site could be hosted using the Blockstack system, ensuring decentralization. Using Blockstackâs p2p payment system will also ensure that publishers are fairly paid.
Building The Solution
I donât personally have enough developer experience to solo this project, but I think a small team of people could build a simple MVP over a weekend or two. If youâre interested in doing this, please reach out to me either via Twitter (@Legionof7) or Discord, where Iâm Legionof7 here (his is the best option).
Iâm excited to see what this could turn into, please reach out!
~JZ
Fixing Fake News With Crowdwisdom and Blockchain was originally published in Hacker Noon on Medium, where people are continuing the conversation by highlighting and responding to this story.
Disclaimer
The views and opinions expressed in this article are solely those of the authors and do not reflect the views of Bitcoin Insider. Every investment and trading move involves risk - this is especially true for cryptocurrencies given their volatility. We strongly advise our readers to conduct their own research when making a decision.